Faculty of Mechanical Engineering and Naval Architecture, Chair of Mechanics and Strength of Materials

PDF Export

Main research field

Computational mechanics, Finite element method, Meshless method, Multiscale numerical modelling, Strain gradient theories, Non-local mechanics, Molecular mechanics, Biomechanics, Damage mechanics, Nonlinear fracture mechanics, Fatigue, Structural integrity.

Specific research areas

Two-scale micro-macro modelling of heterogeneous materials, Atomistic-to-continuum modelling in solid mechanics, Meshless and other novel numerical methods in structural analysis, Numerical modelling of abdominal aorta aneurysm enlargement, Numerical and experimental modelling of cortical bone nonlinear behaviour, Numerical and experimental modelling of fatigue behaviour of nodular cast iron for wind turbine applications, Analytical methods in solid and structural mechanics, Numerical and experimental modelling of cracks in polyethylene pipes.

Techniques/methods

  • Numerical simulations,
  • Mathematical modelling,
  • Calibration of material models,
  • Material parameters calibration,
  • Analytical calculation,
  • Assessment of the strength,
  • stability and integrity of structures,
  • Review of the finite element method calculation,
  • Programming,
  • Computing,
  • CAD modelling.

Equipment

Abaqus – software for finite element analysis, Ansys – software for finite element analysis (under procurement process), ZenCrack - software for fracture mechanics simulation (under procurement process), Cluster computer – NAVEST NOVU IPA KONFIGURCIJU KOJA DOLAZI, ARAMIS - Optical 3D deformation measuring system

Technology keywords

  • Mechanical Engineering, Hydraulics, Vibration and Acoustic Engineering related to construction technology
  • Simulation, Simulation Engineering
  • Metals and Alloys
  • Properties of Materials, Corrosion/Degradation
  • Wind energy
  • Solid state physics
  • Mechanical Engineering
  • Micro-Mechanics
  • Heart and blood circulation illnesses
  • Assessment of Risk

Services offered

  • Material characterisation (testings, measurements, various quantitative and / or qualitative analyses)
  • Use of specialized equipment
  • Diagnostics
  • Quality control
  • Project documentation and solutions
  • Technical proposals
  • Teaching and training
  • Technique / method optimization and testing
  • Strength, stability and integrity computation of structures. Applications of the Finite Element Method.

Market sectors

  • Oil & Gas Producers
  • Oil Equipment, Services & Distribution
  • Alternative Energy
  • Building Materials & Fixtures
  • Heavy Construction
  • Aerospace & Defense
  • Electronic & Electrical Equipment
  • Industrial Engineering
  • Industrial Transportation
  • Support Services
  • Automobiles & Parts
  • Personal Goods
  • Electricity
  • Gas, Water & Multiutilities
  • Technology Hardware & Equipment

Short summary (English)

The scientific activities of the Chair of Mechanics and Strength of Materials are carried out in the framework of the Laboratory of Numerical Mechanics. They include the development of numerical algorithms for modelling of deformation processes of various metallic and non-metallic structures and biological tissues, where the finite element method is mostly applied. The previous studies are related to: the development of the original integration procedures for solving problems of isotropic and anisotropic plasticity under the large and small strain assumption, the development of the analytical methods for the estimating of nonlinear fracture mechanics parameters of ductile metals under creep and quasistatic loading, the numerical modelling of cracks in polymeric materials and the damage accumulation in the cortical bone tissue, the numerical and experimental modelling of low-cycle fatigue behaviour of nodular cast iron for wind turbine applications and the development of the new meshless numerical method for modelling of thick and thin plates as well as shell-like structures. The current research includes: the multiscale modelling of heterogeneous materials using the gradient theories, the second-order computational homogenization techniques and the representative volume element; the development of methodology which couples atomistic and continuum models based on the concurrent Bridging domain method with the focus on the conceptually new class of materials that are only one atom thick, called by common name graphene; the derivation of meshless algorithms for the solution of large strain problems and gradient theories as well as numerical modelling of abdominal aortic aneurysm enlargement. During investigation, a collaboration with world-renowned scientists has been established. In addition, our scientists who received Fulbright and Humboldt grants were guest researchers at several European universities, such as Ruhr University Bochum, Technical University Darmstadt, University of Karlsruhe, Technical University Vienna and Graz, University of California, Irvine and Texas A&M University in the USA, as well as at Ecole Normale Superieure de Cachan in France. The professional activities include solving complex problems of the strength, stability and integrity of structures for industrial needs.

Short summary (Croatian)

Znanstvena djelatnost Katedre za mehaniku i čvrstoću provodi se u okviru Laboratorija za numeričku mehaniku. Odnosi se na razvoj numeričkih algoritama za modeliranje procesa deformiranja različitih metalnih i nemetalnih konstrukcija te bioloških tkiva, pri čemu se uglavnom primjenjuje metoda konačnih elemenata. Prethodna istraživanja odosila su se na: razvoj originalnih integracijskih postupaka za rješavanje problema izotropne i anizotropne plastičnosti uz pretpostavku velikih i malih deformacija; razvoj analitičkih metoda za procjenu parametara nelinearne mehanike loma za slučaj puzanja i kvazistatičkih opterećenja duktilnih metala; numeričko modeliranje pukotina u polimernim materijalima i akumuliranja oštećenja u kortikalnom koštanom tkivu; numeričko i eksperimentalno modeliranje niskocikličkog zamornog ponašanja nodularnog lijeva za primjenu kod vjetroagregata te razvoj nove numeričke bezmrežne metode za modeliranje debelih i tankih ploča te ljuskastih konstrukcija. Trenutna istraživanja obuhvaćaju: višerazinsko modeliranje heterogenih materijala primjenom gradijentnih teorija, tehnika računalne homogenizacije drugog reda i reprezentativnog volumenskog elementa; razvoj metodologije za spajanje atomističkog i kontinuumskog modela primjenom konkurentne metode premošćivanja za analizu nove vrste slojevitih materijala debljine jednog atoma koji se nazivaju zajedničkim imenom grafen; izvod bezmrežnih algoritama za rješavanje problema velikih deformacija i gradijentnih teorija; numeričko modeliranje rasta i razvoja aneurizme abdominalne aorte. Tijekom istraživanja ostvarena je suradnja s renomiranim znanstvenicima iz inozemstva. Znanstvenici s katedre boravili su na više europskih sveučilišta, kao što su Sveučilište Ruhr u Bochumu, Tehničko sveučilište u Darmstadtu, Sveučilište u Kralsruheu, Tehničko sveučilište u Beču i Grazu te u Sjedinjenim Američkim Državama na Kalifornijskom sveučilištu Irvine i na Sveučilištu Texas A&M. Njihovi boravci financirani su prestižnim Fulbrightovim i Humboldtovim stipendijama. Stručna djelatnost odnosi se na rješavanje visokostručnih problema čvrstoće, stabilnosti i cjelovitosti konstrukcija za potrebe gospodarstva.

Last update: 24.11.2014. 15:47:34

Kontaktirajte nas